Prmt1 regulates craniofacial bone formation upstream of Msx1
نویسندگان
چکیده
منابع مشابه
Msx1/Bmp4 genetic pathway regulates mammalian alveolar bone formation via induction of Dlx5 and Cbfa1
In the developing mammalian tooth, the cranial neural crest derived dental mesenchyme consists of the dental papilla and dental follicle. The dental papilla gives rise to odontoblasts and dental pulp and the dental follicle gives rise to the periodontium, including the osteoblasts that contribute to the alveolar process. The alveolar process is a specialized intramembranous bone that forms the ...
متن کاملCalcineurin regulates bone formation by the osteoblast.
Two of the most commonly used immunosuppressants, cyclosporine A and tacrolimus (FK506), inhibit the activity of a ubiquitously expressed Ca(2+)/calmodulin-sensitive phosphatase, calcineurin. Because both drugs also cause profound bone loss in humans and in animal models, we explored whether calcineurin played a role in regulating skeletal remodeling. We found that osteoblasts contained mRNA an...
متن کاملRetraction. PRMT1-mediated arginine methylation of PIAS1 regulates STAT1 signaling.
To elucidate the function of the transcriptional coregulator PRMT1 (protein arginine methyltranferase 1) in interferon (IFN) signaling, we investigated the expression of STAT1 (signal transducer and activator of transcription) target genes in PRMT1-depleted cells. We show here that PRMT1 represses a subset of IFNgamma-inducible STAT1 target genes in a methyltransferase-dependent manner. These g...
متن کاملArginine Methylation by PRMT1 Regulates Muscle Stem Cell Fate
Quiescent muscle stem cells (MSCs) become activated in response to skeletal muscle injury to initiate regeneration. Activated MSCs proliferate and differentiate to repair damaged fibers or self-renew to maintain the pool and ensure future regeneration. The balance between self-renewal, proliferation, and differentiation is a tightly regulated process controlled by a genetic cascade involving de...
متن کاملLeptin Regulates Bone Formation via the Sympathetic Nervous System
We previously showed that leptin inhibits bone formation by an undefined mechanism. Here, we show that hypothalamic leptin-dependent antiosteogenic and anorexigenic networks differ, and that the peripheral mediators of leptin antiosteogenic function appear to be neuronal. Neuropeptides mediating leptin anorexigenic function do not affect bone formation. Leptin deficiency results in low sympathe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mechanisms of Development
سال: 2018
ISSN: 0925-4773
DOI: 10.1016/j.mod.2018.05.001